
6-1

Methodology for Flow and Salinity Estimates in the
Sacramento-San Joaquin Delta and Suisun Marsh

16th Annual Progress Report
June 1995

Chapter 6:
Model Input System

Author: Ralph Finch

6-1

66 Model Input System

Background
Historically, the majority of effort expended in computer modeling of physical systems has gone
into the numerical algorithms used in the computer programs. Other aspects of modeling, such
as data quantity, quality, and availability; ease of use (data input and output structure); or the
ability to rapidly analyze results, have not received comparable attention.

For the engineers who must use models on a daily basis to solve real-world problems, lack of
progress in data availability and user interfaces has prevented them from taking full advantage of
the reductions in time and increases in work quality possible by using computer models.
However, by viewing models not as simply isolated computer programs or implementations of
an algorithm, but rather as entire simulation systems, it is possible to better balance overall
development so as to provide significant increases in overall system accuracy and speed, as
opposed to only improvements in the numerical engines. This chapter describes a new input
system developed at the California Department of Water Resources for flow and mass transport
models in estuaries. Efforts to improve data availability to staff engineers were described in the
1991 and 1992 Annual Reports, and a project to improve the graphical output capabilities was
described in 1992.

New Input System
The design goals of the new system were to increase ease of use of the models, decrease errors in
setting up model runs, and improve the model by allowing more precise and consistent time
specifications. Traditional Fortran model input is easy to program, but cumbersome to use. We
shifted the effort from the user to the programmer, so that the new system is easier to use but
now more difficult to change. We felt this was a reasonable tradeoff to make given past
experience with traditional I/O systems. The current system, from a user's point of view, is
difficult to learn, sometimes confusing and contradictory, and easy to make blunders.

Fixed Input
Estuary model input may be split into two categories: fixed and time-varying. Fixed input
consists of the geometry, run control, input and output control, and so on, which does not varying
with time during the model run. Here the concept of orthogonality is important, that is, each
logical input section should not be mixed in with other sections. For instance, when the user
changes the output control, that should in no way affect the geometry specifications. In the
current system, different types of input are often mixed together.

Design goals for the fixed input were clarity, ease of use, and flexibility. Clarity simply means
that a user looking at a new input file should be able to understand quickly what the intent of the
input file is, without ambiguity. To this end, the input system uses keywords throughout that
label different sections of input and also serve as input values. For instance, to specify gate

6-2

positions, instead of using numbers (0 or 1), we use CLOSE or OPEN. Users can insert
comments in the data files for documentation purposes, similarly to computer source code, as
well as blank lines for additional ease in reading the input.

Channel geometry information
Use DSM numbering for channels and junctions

CHANNELS

CHAN LENGTH MANNING DISP DOWNNODE UPNODE XSECT
1 8400 0.037 0.150 2 1 1 2
2 8400 0.037 0.150 3 2 3 4
3 13600 0.035 0.150 4 3 5 6
END

Run start and end times
SCALAR
run_start_date 31dec1989
run_start_time 2300
run_end_date 02jan1990
run_end_time 0500
#run_length 26hour # if used, comment out

run end date and time
time_step 5 # time step, in minutes
END

Figure 6-1: Example of Format of Fixed Input to DSM2

For ease of use and flexibility, fixed input is specified in the files in terms of sections, for
instance, channel geometry, or gate information. Each section consists of a header line
specifying the section keyword; a field header line (except for single-value input), specifying
which fields contain what data; the data values; and the END keyword, which marks the end of
that section. Thus each section takes the appearance of a simple table (Figure 6-1). The user is
never required to tell the computer how much input to expect, because the end of sections are
marked. Fixed columns are never used; rather, data fields are separated by spaces so that users
can prepare files that are easy to read.

One of the sections is used to specify other files to read, so that different logical sections can be
in different files, at the user's option. Each section can be in one to many files, or one file can
have several sections. The user can repeat sections, each subsequent section overlaying previous
sections. This allows the use of a few main files containing generally stable, permanent
information, stored in a central location. For a particular run a user can create new sections
which just that information that is changed, not repeating the unchanged information.

Time-varying Input
Time-varying input are data such as boundary stage, flows, and water quality; internal flows and
water quality, pumping rates, and gate operations. For this input, we choose to use a database

6-3

written by the U.S. Army Corp of Engineers expressly for hydrologic data. The database is the
Hydrologic Engineering Center Data Storage System (HECDSS). HECDSS is already in use
with the DGUI, and is fast, does not consume excessive storage or computing resources, is
available for a wide variety of computers (PCs, Unix machines, and mainframes), and may be
used both interactively and as subroutine calls from Fortran. With HECDSS the timing of events
are known precisely during the model run, and can be displayed very clearly in both the input
and the output, eliminating ambiguity and confusion. This is an important step forward from the
situation with our current model, which has a traditional I/O system using ASCII files only. In
the current system, time-varying data is entered in fixed, mixed time steps of calendar days, tidal
days, and hours, and there is virtually no indication of what time is associated with each data
item.

With the new system using HECDSS, users may enter data using several time step intervals (15
minute, hourly, daily, and monthly), as well as irrgularly timed data. Each data stream is clearly
labeled as to its interval, and the models automatically keep the different data streams
synchronized during a run. Figure 6-2 shows a typical section of the fixed input that describes
the time-varying input specifications (the INPUTPATHS section). Several features are worth
noting here. First, for consistency and ease of use, the locations may be specified as place
names, even though the model needs a channel and distance along the channel. The second
section in Figure 6-2 shows how place names are translated to channel/distances. In the
INPUTPATHS section, the time intervals of the data are different; the model keeps track of the
data for each interval. Modifiers may be used to specify different data streams for different
studies, etc. The FILLIN field refers to how values should be specified between exact data
values; either use the last (previous) data value, or interpolate between data values. Finally, the
DSS filename is given to indicate where each data stream is located. Not shown in Figure 6-2
are fields that allow the data stream to have a different start time than the model run.

INPUTPATHS
NAME TYPE INTERVAL MODIFIER FILLIN FILENAME
MTZ STAGE 15MIN NONE LAST TEST.DSS
SJR FLOW 1MONTH NONE INTERP TEST.DSS
SAC FLOW 1DAY STUDY-A INTERP TEST2.DSS
CVP FLOW 1DAY NONE LAST TEST.DSS
END

Translations from common name to channel-distance
TRANSLATION
NAME CHAN DIST
MTZ 441 LENGTH
SAC 410 0
SJR 1 0
CVP 216 0
END

Figure 6-2: Typical Section of Fixed Input Describing Time-Varying Specifications

To enter data into HECDSS, two basic methods are available. The first is to use standard
HECDSS data input programs called DSSTS (regularly spaced data) or DSSITS (irregularly

6-4

spaced data). These programs read time series data from an ASCII file (Figure 6-3), and
translate it to a HECDSS file. The first few lines contain the HECDSS filename, the pathname
of the data stream, units of the data, whether it is average or instaneous values, and the starting
date. Subsequent lines contain the data itself, then the END keyword, and either further data
streams or FINISH to end the data file.

The second method is designed for repetitive data and was written by Jatinder Singh of DWR.
Since for most studies synthetic data with repetitive patterns is used for many of the time-varying
inputs, a preprocessor is used to simplify the generation of data and storage into HECDSS. The
core of the preprocessor is an ASCII file with one input description per line. A description
specifies the start and end date and times, the time interval (hourly, daily, monthly, etc.), the
location, study name, parameter (stage, flow, etc.), repeat information (e.g. repeat every hour),
and the data value. This file is parsed with a program written in YACC and data written to a
HECDSS file. With the repeat information, one line could expand to many different time values
in the DSS file, saving the user much effort. To aid users in creating and changing the ASCII
file in this method, a template is being written for the text editor GNU Emacs.

input.dss
/DELTA/MTZ/STAGE/01JUN1994/1HOUR//
FEET
INST-VAL
01JUN1994 0000
-0.52
-0.58
-0.26
0.32
1.00
1.50

END
/DELTA/SWP/FLOW/01JUN1994/1HOUR//
CFS
PER-AVER
01JUN1994 0000

1000
1000
1000
1500
1500
1500

END
FINISH

Figure 6-3: Example of HECDSS Input

	Model Input System
	Background
	New Input System
	Fixed Input
	Time-varying Input

